Dear Deeply Readers,

Welcome to the archives of Arctic Deeply. While we paused regular publication of the site on September 15, 2017, and transitioned some of our coverage to Oceans Deeply, we are happy to serve as an ongoing public resource on the Arctic. We hope you’ll enjoy the reporting and analysis that was produced by our dedicated community of editors contributors.

We continue to produce events and special projects while we explore where the on-site journalism goes next. If you’d like to reach us with feedback or ideas for collaboration you can do so at [email protected].

How Arctic Weather Can Improve Mid-Latitude Forecasts

Increased monitoring of Arctic weather conditions could help predict big storms that strike more southerly latitudes, according to new research by the National Institute of Polar Research in Japan.

Written by Mara Johnson-Groh Published on Read time Approx. 3 minutes
The jet stream, created by the convergence of Tropic and Arctic air, is highly variable and strongest in the winter when the temperature difference in the Northern Hemisphere is greatest.NASA’s Goddard Space Flight Center

During the second week of February in 2015, the meandering jet stream slipped steadily southward, pulling down icy fingers of Arctic air. In Buffalo, New York, February 15 was the coldest day in 21 years, and record daily lows were recorded from the Great Lakes across the Eastern Seaboard. Nicknamed winter storm Neptune, the blizzard halted traffic with snowfall up to two feet, and winds in excess of 80km (50 miles) per hour brought down trees.

Extreme winter weather events such as Neptune have become increasingly frequent in recent years and there is substantial evidence linking these mid-latitude storms to changing Arctic weather patterns. With their high human and socioeconomic impacts, predicting these storms could have large societal benefits.

New research, published in the Journal of Geophysical Research, shows that it may be possible to improve forecasts of these extreme events at mid-latitudes across Europe, North America and East Asia, while simultaneously enhancing local Arctic weather predictions.

“The number of observations over the Arctic region is limited due to the harsh environment,” said Kazutoshi Sato, the lead author of the paper and postdoctoral scientist at the National Institute of Polar Research in Japan. “But I think that an increase in the number of observations at existing Arctic stations will improve weather forecasts over the Northern Hemisphere.”

In an era of rapid climate change, Arctic sea ice and snow cover are melting at escalating rates. More open water has led to warmer and moister air masses over the pole, which elbows at the polar jet stream – an effect with far-reaching consequences. As the jet stream meanders southward, it tows down Arctic air, creating “cold-air outbreaks” and bringing extreme weather.

“In climate science, the emphasis has long been on the tropics, so focusing on changes in the Arctic provides an opportunity to improve seasonal forecasts,” said Judah Cohen, climate scientist and director of seasonal forecasting at Atmospheric and Environmental Research. “It’s been underappreciated in the community until recently.”

Extreme storms have been increasing in Japan, as well as North America, and a group of Japanese scientists decided to study the link in more detail, to see if they could improve forecasts with additional observations.

The scientists looked at measurements taken with weather balloons across the Arctic from Barrow, Alaska, to Bear Island in the Svalbard Archipelago, to Eureka, Nunavut. These balloons take measurements as they ascend into the stratosphere, allowing a vertical sampling of Arctic air masses.

Winter storm Neptune works its way out over the Atlantic after bringing extreme conditions across the Northwest. (Cooperative Institute for Meteorological Satellite Studies (CIMSS), University of Wisconsin – Madison, USA)

While measurements are typically taken just twice daily, the Japanese scientists acquired data four times per day during the period leading up to winter storm Neptune. They also received additional data from a Norwegian research vessel that had been traveling north of Svalbard at the time.

Comparing the normal level of data with the additional measurements, the scientists created forecast models, which they compared to the winter storms that swept across North America and East Asia. The increase in measurements helped reduce the uncertainties in the models, which allowed them to accurately recreate the storms.

Future studies, the scientists hope, will help pinpoint precise locations for optimal observation. New stations could also improve local weather forecasts for residents in the region, including sea ice predictions for local fishermen and shippers crossing the Northern Sea Route.

Due to the remote locations, logistics and lack of funding make it financially unfeasible to create new stations. However, increasing the number of daily recordings at existing stations isn’t out of the question. And if the Northern Sea Route sees an increase in traffic, commercial ships passing through could also take on a secondary job as mobile weather stations, taking pressure, wind and temperature measurements from the surface.

“Japan alone cannot manage the Arctic operational observations,” said Jun Inoue, coauthor on the paper and associate professor at the National Institute of Polar Research in Japan. “However, we can demonstrate the importance of the observations to the stakeholders.”

Improvements to observations seem to be on the horizon. The Year of Polar Prediction – a project by the World Meteorological Organization scheduled to launch later this year – aims to support research to further develop prediction services, including intensified observations needed to improve forecasting methods.

Never miss an update. Sign up here for our Arctic Deeply newsletter to receive weekly updates, special reports and featured insights on one of the most critical issues of our time.

Suggest your story or issue.

Send

Share Your Story.

Have a story idea? Interested in adding your voice to our growing community?

Learn more